Nathaniel Simon

Email: nsimon@princeton.edu

Homepage: natesimon.github.io

My research improves aerial vehicle performance in the real world using high-dimensional sensors (e.g., vision, airflow) and machine learning. My goal is to enable transformative autonomy in applications such as urban air mobility, package delivery, infrastructure inspection, and ISR. Specifically, I design, build, and test high-frequency omnidirectional flow sensors for UAVs, as well as flight controllers to navigate unsteady flows. (See: FlowDrone, 3 min video.) I also work on fast, monocular, micro aerial vehicle navigation using computer vision (See: MonoNav). I am actively seeking roles in the autonomous vehicle and robotics industries in perception, planning, and control.

Education

Ph.D. in Mechanical & Aerospace Engineering , Princeton University Advisors: Anirudha Majumdar (IRoM Lab), Marcus Hultmark (FAST Group)	2020 - Present		
Master of Science, Mechanical Engineering, Stanford University	2019 - 2020		
Bachelor of Science, Mechanical Engineering, Stanford University	2015 - 2019		

Experiences

Project Lead: FlowDrone, Princeton University FlowDrone is an experimental quadrotor for wind-aware control in gusty conditions. FlowDrone uses MAST (MEMS Anemometry Sensing Tower), a high-speed omnidirectional flow sensor, and a wind-aware controller learned in simulation, to outperform baseline controllers in lab-generated gusts.

 Project Lead: MonoNav, Princeton University
 Nov-Oct 2023

 MonoNav is a monocular navigation stack that enables micro aerial vehicles to explore unknown environments through simultaneous navigation and reconstruction, using pre-trained metric depth estimation.

Product Manager Intern, Somewear Labs, San Francisco, CA Summer 2019 Somewear develops satellite transceivers for off-grid communication. I led business development and field testing for Air Force customers to improve situational awareness in combat search and rescue operations.

Head Teaching Assistant, MS&E 297: Hacking 4 Defense, Stanford University Spring 2019, 2020 Student teams apply lean startup principles to national security problems, taking a hands-on approach requiring close engagement with military, DoD, and other government end-users.

1st Mechanical Engineer Intern, Redwood Materials, Milpitas, CA Fall 2018 Founded by JB Straubel, Redwood Materials recycles lithium-ion batteries to accelerate electrification. I modeled their early electrorefining system.

Design Engineer Intern, Boyd Corp, San Jose, CA I designed and validated thermal systems (electronics cooling solutions) for customers, using Solidworks, ANSYS ICEPAK, and experimental tests.

Aviation Systems Engineering Intern, Garmin Aviation, Olathe, KSSummer 2017Garmin is a leading provider of avionics in general aviation and corporate aircraft. I developed anintegrated test bench for the TXi[™] family of touchscreen flight displays.

France-Stanford Fellow, CentraleSupélec, Paris, France

I researched nonthermal (glow) plasma generation under the supervision of Prof. Christophe Laux.

Summer 2016

Publications

MonoNav: MAV Navigation via Monocular Depth Estimation and Reconstruction.

Nathaniel Simon and Anirudha Majumdar. International Symposium on Experimental Robotics, 2023.

Online Learning for Obstacle Avoidance.

David Snyder, Meghan Booker, <u>Nathaniel Simon</u>, Wenhan Xia, Daniel Suo, Elad Hazan, and Anirudha Majumdar. *Conference on Robot Learning*, 2023.

FlowDrone: Wind Estimation and Gust Rejection on UAVs Using Fast-Response Hot-Wire Flow Sensors.

Nathaniel Simon, Allen Z. Ren, Alexander Piqué, David Snyder, Daphne Barretto, Marcus Hultmark, and Anirudha Majumdar. *International Conference on Robotics and Automation*, 2023.

Fast-Response Hot-wire Flow Sensors for Wind and Gust Estimation on UAVs.

<u>Nathaniel Simon</u>^{*}, Alexander Piqué^{*}, David Snyder, Kyle Ikuma, Anirudha Majumdar, and Marcus Hultmark, *Measurement Science and Technology (MST)*, 2022. (* Equal Contribution)

Awards and Honors

•	Best Paper Award: MonoNav . Project Website. Learning Robot Super Autonomy Workshop, International Conference on Intelligent Robots and Systems (II	2023 ROS).
•	Crocco Award for Teaching Excellence \$1,000 award for teaching excellence in MAE 345/549: Introduction to Robotics.	2023
•	Robotics and Automation Society Student Travel Grant \$1,300 for travel to the International Conference on Robotics and Automation in London, UK.	2023
•	Outstanding Presentation Award, Princeton Research Day \$1,500 prize for my video presentation: <i>Improving Drone Performance in Wind with Novel, Fast, Sensors</i> .	2023
•	Guggenheim Second Year Fellowship, Princeton University Departmental fellowship for high performing second year students.	2021
•	National Science Foundation Graduate Research Fellowship Program (NSF GRFP) "The five-year fellowship provides three years of financial support inclusive of an annual stipend of \$37,000	2020 ."

Invited Talks

• International Symposium on Experimental Robotics, Chiang Mai, Thailand.	Nov 2023
• 76th Annual Meeting of the Division of Fluid Dynamics, Washington DC.	Nov 2023
• PX4 Developer Summit, New Orleans.	Oct 2023
Robotics Student Seminar, Princeton.	Oct 2023
Google Deepmind, Princeton.	Mar 2023
 Thousand Islands Fluid Dynamics Meeting, Ontario, Canada. 	Apr 2023
• 75th Annual Meeting of the Division of Fluid Dynamics, Indianapolis.	Nov 2022
Mechanical & Aerospace Engineering Research Day, Princeton.	Sep 2022

Teaching Assistant Experience

• Aircraft Design (MAE 332), Princeton MAE	Spring 2023
 Introduction to Robotics (MAE 345/549), Princeton MAE 	Fall 2022
 Introduction to Engineering Dynamics (MAE 206), Princeton MAE 	Spring 2022
 Hacking for Defense (MS&E 297), Stanford MS&E 	Spring 2019, 2020
 Introductory Fluids Engineering, Stanford ME 	Winter 2020
 Technology and National Security, Stanford MS&E 	Fall 2019

Academic Service

Undergraduate Students Advised

-	
Arthur Schmidt (COS), Next: SpaceX	2023
• Skywalker Li (ECE)	2023
• Jimmy Tran (MAE)	2023
• Dylan Epsteingross (COS)	2023
Daphne Barretto (COS), Next: Microsoft & Stanford MS	2022, 2023
• David Fu (MAE)	2022
• John Wallace (MAE)	2022
• Kyle Ikuma (MAE), Next: Skydio	2021
Ducanizar	

Organizer

•	• Princeton	Robotics a	Sem	inar									2022-20	123
					-	10	~			-		10		

• Workshop: Bridging the Lab-to-Real Gap: Conversations with Academia, Industry, and Government (ICRA 2023).

Key Skills

- **Topics:** Robotics (kinematics, dynamics, motion planning, feedback control), Computer Vision (depth estimation, reconstruction, OpenCV, Open3D), Sensors (design, fabrication, characterization), Fluids (weather, wind, turbulence).
- Software: Python, C++, MATLAB, Bash, Robot Operating System (ROS), PX4 Autopilot.
- Hardware: Custom UAV design and fabrication, Bitcraze Crazyflie, Unitree Go1 Quadruped, clean room processes, Diptrace/Eagle, Solidworks/Fusion 360, 3D printing, soldering, machining.
- Aviation: Private Pilot (Single Engine Land, Glider), Instrument Rated, Part 107 Remote Pilot (UAS).

Advisor References

Ani Majumdar (Advisor)	Marcus Hultmark (Co-advisor)
Assistant Professor	Professor
Intelligent Robot Motion Lab	Fundamental and Applied Studies in Turbulence
Mechanical and Aerospace Engineering	Mechanical and Aerospace Engineering
Princeton University	Princeton University
ani.majumdar@princeton.edu	hultmark@princeton.edu
(609) 258-0854	(609) 258-5689

Additional references available upon request.